156 research outputs found

    Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results

    Get PDF
    Accurate stratigraphic ages are crucial to understanding the deformation history of the Tibetan Plateau prior to and during the Indo-Asian collision. Efforts to quantify Mesozoic-Cenozoic ages are hindered by limited fossils and a paucity of volcanic horizons and regionally correlative strata. Magnetostratigraphic and biostratigraphic results from the Xining-Minhe-Longzhong basin complex and Dangchang basin provide an improved chronology of nonmarine basin development over a large region of the northeastern Tibetan Plateau (34–37°N, 101–105°E). Analyses of 171 magnetostratigraphic levels and 24 palynological assemblages (\u3e120 species) indicate Late Jurassic-Early Cretaceous to mid-Tertiary deposition. Although magnetic polarity zonation is incomplete, independent palynological age control partially restricts possible correlations to the Geomagnetic Polarity Timescale. The sediment accumulation record, basin provenance, structural geology, and published thermochronological data support a history of Jurassic exhumation, Late Jurassic-Early Cretaceous fault-related basin initiation, and Cretaceous-Paleogene reduced accumulation. These patterns, which are compatible with Late Jurassic-Early Cretaceous extension and Cretaceous-Paleogene postrift thermal subsidence, were disrupted at about 40–30 Ma, when shortening related to the Indo-Asian collision induced localized range uplift, vertical axis rotation, and amplified subsidence

    Paleoseismology of the Xorxol Segment of the Central Altyn Tagh Fault, Xinjiang, China

    Get PDF
    Although the Altyn Tagh Fault (ATF) is thought to play a key role in accommodating India-Eurasian convergence, little is known about its earthquake history. Studies of this strike-slip fault are important for interpretation of the role of faulting versus distributed deformation in the accommodation of the India- Eurasia collision. In addition, the > 1200 km long fault represents one of the most important and exemplary intracontinental strike-slip faults in the world. We mapped fault trace geometry and interpreted paleoseismic trench exposures to characterize the seismogenic behavior of the ATF. We identified 2 geometric segment boundaries in a 270 km long reach of the central ATF. These boundaries define the westernmost Wuzhunxiao, the Central Pingding, and the easternmost Xorxol (also written as Suekuli or Suo erkuli) segments. In this paper, we present the results from the Camel paleoseismic site along the Xorxol Segment at 91.759°E, 38.919°N. There evidence for the last two earthquakes is clear and 14C dates from layers exposed in the excavation bracket their ages. The most recent earthquake occurred between 1456 and 1775 cal A.D. and the penultimate event was between 60 and 980 cal A.D. Combining the Camel interpretations with our published results for the central ATF, we conclude that multiple earthquakes with shorter rupture lengths (?? 50 km) rather than complete rupture of the Xorxol Segment better explain the paleoseismic data. We found 2-3 earthquakes in the last 2-3 kyr. When coupled with typical amounts of slip per event (5-10 m), the recurrence times are tentatively consistent with 1-2 cm/yr slip rates. This result favors models that consider the broader distribution of collisional deformation, rather than those with northward motion of India into Asia absorbed along a few faults bounding rigid blocks

    Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters

    Get PDF
    Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago – Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34–37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises
    • …
    corecore